Статика момент силы условия равновесия твердого тела. Условия равновесия твердого тела

01.07.2023

Определение

Равновесием тела называют такое состояние, когда любое ускорение тела равняется нулю, то есть все действия на тело сил и моментов сил уравновешены. При этом тело может:

  • находиться в состоянии спокойствия;
  • двигаться равномерно и прямолинейно;
  • равномерно вращаться вокруг оси, которая проходит через центр его тяжести.

Условия равновесия тела

Если тело находится в равновесии, то одновременно выполняются два условия.

  1. Векторная сумма всех сил, действующих на тело, равна нулевому вектору : $\sum_n{{\overrightarrow{F}}_n}=\overrightarrow{0}$
  2. Алгебраическая сумма всех моментов сил, действующих на тело, равна нулю: $\sum_n{M_n}=0$

Два условия равновесия являются необходимыми, но не являются достаточными. Приведем пример. Рассмотрим равномерно катящееся без проскальзывания колесо по горизонтальной поверхности. Оба условия равновесия выполняются, однако тело движется.

Рассмотрим случай, когда тело не вращается. Для того, чтобы тело не вращалось и находилось в равновесии, необходимо, чтобы сумма проекций всех сил на произвольную ось равнялась нулю, то есть равнодействующая сил. Тогда тело или находится в спокойствии, или двигается равномерно и прямолинейно.

Тело, которое имеет ось вращения, будет находиться в равновесном состоянии, если выполняется правило моментов сил: сумма моментов сил, которые вращают тело по часовой стрелке, должна равняться сумме моментов сил, которые вращают его против часовой стрелки.

Чтобы получить нужный момент при наименьшем усилии, нужно прикладывать силу как можно дальше от оси вращения, увеличивая тем же плечо силы и соответственно уменьшая значение силы. Примеры тел, которые имеют ось вращения, : рычаг, двери, блоки, коловорот и тому подобное.

Три вида равновесия тел, которые имеют точку опоры

  1. стойкое равновесие, если тело, будучи выведенным из положения равновесия в соседнее ближайшее положение и оставлено в спокойствии, вернется в это положение;
  2. неустойчивое равновесие, если тело, будучи выведенным из положения равновесия в соседнее положение и оставлено в спокойствии, будет еще больше отклоняться от этого положения;
  3. безразличное равновесие - если тело, будучи выведенным в соседнее положение и оставлено в спокойствии, останется в новом своем положении.

Равновесие тела с закрепленной осью вращения

  1. стойким, если в положении равновесия центр тяжести С занимает самое низкое положение из всех возможных ближних положений, а его потенциальная энергия будет иметь наименьшее значение из всех возможных значений в соседних положениях;
  2. неустойчивым, если центр тяжести С занимает наивысший из всех ближних положений, а потенциальная энергия имеет наибольшее значение;
  3. безразличным, если центр тяжести тела С во всех ближних возможных положениях находится на одном уровне, а потенциальная энергия при переходе тела, не изменяется.

Задача 1

Тело A массой m = 8 кг поставлено на шероховатую горизонтальную поверхность стола. К телу привязана нить, перекинутая через блок B (рисунок 1, а). Какой груз F можно подвязать к концу нити, свешивающейся с блока, чтобы не нарушить равновесия тела A? Коэффициент трения f = 0,4; трением на блоке пренебречь.

Определим вес тела ~A: ~G = mg = 8$\cdot $9,81 = 78,5 Н.

Считаем, что все силы приложены к телу A. Когда тело поставлено на горизонтальную поверхность, то на него действуют только две силы: вес G и противоположно направленная реакция опоры RA (рис. 1, б).

Если же приложить некоторую силу F, действующую вдоль горизонтальной поверхности, то реакция RA, уравновешивающая силы G и F, начнет отклоняться от вертикали, но тело A будет находиться в равновесии до тех пор, пока модуль силы F не превысит максимального значения силы трения Rf max, соответствующей предельному значению угла ${\mathbf \varphi }$o(рис. 1, в).

Разложив реакцию RA на две составляющие Rf max и Rn, получаем систему четырех сил, приложенных к одной точке (рис. 1, г). Спроецировав эту систему сил на оси x и y, получим два уравнения равновесия:

${\mathbf \Sigma }Fkx = 0, F - Rf max = 0$;

${\mathbf \Sigma }Fky = 0, Rn - G = 0$.

Решаем полученную систему уравнений: F = Rf max, но Rf max = f$\cdot $ Rn, а Rn = G, поэтому F = f$\cdot $ G = 0,4$\cdot $ 78,5 = 31,4 Н; m = F/g = 31,4/9,81 = 3,2 кг.

Ответ: Масса груза т = 3,2 кг

Задача 2

Система тел, изображённая на рис.2, находится в состоянии равновесия. Масса груза тг=6 кг. Угол между векторами $\widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}=60{}^\circ $. $\left|{\overrightarrow{F}}_1\right|=\left|{\overrightarrow{F}}_2\right|=F$. Найти массу гирь.

Равнодействующая сил ${\overrightarrow{F}}_1и\ {\overrightarrow{F}}_2$ равна по модулю весу груза и противоположна ему по направлению: $\overrightarrow{R}={\overrightarrow{F}}_1+{\overrightarrow{F}}_2=\ -m\overrightarrow{g}$. По теореме косинусов, ${\left|\overrightarrow{R}\right|}^2={\left|{\overrightarrow{F}}_1\right|}^2+{\left|{\overrightarrow{F}}_2\right|}^2+2\left|{\overrightarrow{F}}_1\right|\left|{\overrightarrow{F}}_2\right|{cos \widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}\ }$.

Отсюда ${\left(mg\right)}^2=$; $F=\frac{mg}{\sqrt{2\left(1+{cos 60{}^\circ \ }\right)}}$;

Поскольку блоки подвижные, то $m_г=\frac{2F}{g}=\frac{2m}{\sqrt{2\left(1+\frac{1}{2}\right)}}=\frac{2\cdot 6}{\sqrt{3}}=6,93\ кг\ $

Ответ: масса каждой из гирь равна 6,93 кг

Очевидно, что тело может покоиться только по отношению к одной определенной системе координат. В статике изучают условия равновесия тел именно в такой системе. При равновесии скорости и ускорения всех участков (элементов) тела равны нулю. Учитывая это, можно установить одно из необходимых условии равновесия тел, используя теорему о движении центра масс (см. § 7.4).

Внутренние силы не влияют на движение центра масс, так как их сумма всегда равна нулю. Определяют движение центра масс тела (или системы тел) лишь внешние силы. Так как при равновесии тела ускорение всех его элементов равно нулю, то равно нулю и ускорение центра масс. Но ускорение центра масс определяется векторной суммой внешних сил, приложенных к телу (см. формулу (7.4.2)). Поэтому при равновесии эта сумма должна равняться нулю.

Действительно, если сумма внешних сил F i равна нулю, то и ускорение центра масс а c = 0. Отсюда следует, что скорость центра масс с = const. Если в начальный момент скорость центра масс равнялась нулю, то и в дальнейшем центр масс остается в покое.

Полученное условие неподвижности центра масс является необходимым (но, как мы скоро увидим, недостаточным) условием равновесия твердого тела. Это так называемое первое условие равновесия. Его можно сформулировать следующим образом.

Для равновесия тела необходимо, чтобы сумма внешних сил, приложенных к телу, была равна нулю:

Если сумма сил равна нулю, то равна нулю и сумма проекций сил_на все три оси координат. Обозначая внешние силы через 1 , 2 , 3 и т. д., получим три уравнения, эквивалентных одному векторному уравнению (8.2.1):

Для того чтобы тело покоилось, необходимо еще, чтобы начальная скорость центра масс была равна нулю.

Второе условие равновесия твердого тела

Равенство нулю суммы внешних сил, действующих на тело, необходимо для равновесия, но недостаточно. При выполнении этого условия лишь центр масс с необходимостью будет покоиться. В этом нетрудно убедиться.

Приложим к доске в разных точках равные по модулю и противоположные по направлению силы так, как показано на рисунке 8.1 (две такие силы называют парой сил). Сумма этих сил равна нулю: + (-) = 0. Но доска будет поворачиваться. В покое находится только центр масс, если его начальная скорость (скорость до приложения сил) была равна нулю.

Рис. 8.1

Точно так же две одинаковые по модулю и противоположные по направлению силы поворачивают руль велосипеда или автомобиля (рис. 8.2) вокруг оси вращения.

Рис. 8.2

Нетрудно понять, в чем здесь дело. Любое тело находится в равновесии, когда сумма всех сил, действующих на каждый его элемент, равна нулю. Но если сумма внешних сил равна нулю, то сумма всех сил, приложенных к каждому элементу тела, может быть и не равной нулю. В этом случае тело не будет находиться в равновесии. В рассмотренных примерах доска и руль потому и не находятся в равновесии, что сумма всех сил, действующих на отдельные элементы этих тел, не равна нулю. Тела вращаются.

Выясним, какое еще условие, кроме равенства нулю суммы внешних сил, должно выполняться, чтобы тело не вращалось и находилось в равновесии. Для этого воспользуемся основным уравнением динамики вращательного движения твердого тела (см. § 7.6):

Напомним, что в формуле (8.2.3)

представляет собой сумму моментов приложенных к телу внешних сил относительно оси вращения, a J - момент инерции тела относительно той же оси.

Если , то и Р = 0, т. е. тело не имеет углового ускорения, и, значит, угловая скорость тела

Если в начальный момент угловая скорость равнялась нулю, то и в дальнейшем тело не будет совершать вращательное движение. Следовательно, равенство

(при ω = 0) является вторым условием, необходимым для равновесия твердого тела.

При равновесии твердого тела сумма моментов всех внешних сил, действующих на него относительно любой оси (1), равна нулю .

В общем случае произвольного числа внешних сил условия равновесия твердого тела запишутся в виде:

Эти условия необходимы и достаточны для равновесия любого твердого тела. Если они выполняются, то векторная сумма сил (внешних и внутренних), действующих на каждый элемент тела, равна нулю.

Равновесие деформируемых тел

Если тело не абсолютно твердое, то под действием приложенных к нему внешних сил оно может не находиться в равновесии, хотя сумма внешних сил и сумма их моментов относительно любой оси равна нулю. Это происходит потому, что под действием внешних сил тело может деформироваться и в процессе деформации сумма всех сил, действующих на каждый его элемент, в этом случае не будет равна нулю.

Приложим, например, к концам резинового шнура две силы, равные по модулю и направленные вдоль шнура в противоположные стороны. Под действием этих сил шнур не будет находиться в равновесии (шнур растягивается), хотя сумма внешних сил равна нулю и равна нулю сумма их моментов относительно оси, проходящей через любую точку шнура.

При деформации тел, кроме того, происходит изменение плеч сил и, следовательно, изменение моментов сил при заданных силах. Отметим еще, что только у твердых тел можно переносить точку приложения силы вдоль линии действия силы в любую другую точку тела. Это не меняет момента силы и внутреннего состояния тела.

В реальных телах переносить точку приложений силы вдоль линии ее действия можно лишь тогда, когда деформации, которые вызывает эта сила, малы и ими можно пренебречь. В этом случае изменение внутреннего состояния тела при переносе точки приложения силы несущественно. Если же деформациями пренебречь нельзя, то такой перенос недопустим. Так, например, если вдоль резинового бруска к двум его концам приложить две равные по модулю и прямо противоположные по направлению силы 1 и 2 (рис. 8.3, а), то брусок будет растянут. При переносе точек приложения этих сил вдоль линии действия в противоположные концы бруска (рис. 8.3, б) те же силы будут сжимать брусок и его внутреннее состояние окажется иным.

Рис. 8.3

Для расчета равновесия деформируемых тел нужно знать их упругие свойства, т. е. зависимость деформаций от действующих сил. Эту сложную задачу мы решать не будем. Простые случаи поведения деформируемых тел будут рассмотрены в следующей главе.

(1) Мы рассматривали моменты сил относительно реальной оси вращения тела. Но можно доказать, что при равновесии тела сумма моментов сил равна нулю относительно любой оси (геометрической линии), в частности относительно трех осей координат или относительно оси, проходящей через центр масс.

Статика — это раздел механики, изучающий равновесие тел. Статика позволяет определить условия равновесия тел и отвечает на некоторые вопросы, которые касаются движения тел, например, дает ответ, в каком направлении возникает движение, если равновесие нарушено. Стоит оглянуться вокруг и можно заметить, что большинство тел находятся в равновесии – они либо движутся с постоянной скоростью, либо покоятся. Этот вывод можно сделать из законов Ньютона.

Примером может служить сам человек, картина, висящая на стене, подъёмные краны, различные постройки: мосты, арки, башни, здания. Тела вокруг нас подвергаются воздействию каких-либо сил. На тела действует разное количество сил, но если будем находить результирующую силу, для тела, находящегося в равновесии, она будет равна нулю.
Различают:

  • статическое равновесие – тело покоится;
  • динамическое равновесие – тело движется с постоянной скоростью.

Статическое равновесие. Если на тело действуют силы F1, F2, F3, и так далее, то основным требованием существования состояния равновесия является (равновесие). Это векторное уравнение в трехмерном пространстве, и представляет три отдельных уравнения, по одному для каждого направлению пространства. .

Приложенные к телу проекции всех сил на любое направление, должны компенсироваться, то есть алгебраическая сумма проекций всех сил на любое направление должна быть равна 0.

При нахождении равнодействующей силы можно перенести все силы и расположить точку их приложения в центр масс. Центр масс – точка, которая вводится для характеристики движения тела или системы частиц, как целого, характеризует распределение масс в теле.

На практике мы очень часто встречаем случаи и поступательного, и вращательного движения одновременно: скатывание бочки по наклонной плоскости, танцующая пара. При таком движении одного условия равновесия недостаточно.

Необходимое условие равновесия в этом случае будет:

На практике и в жизни большую роль играет устойчивость тел , характеризующая равновесие.

Различают виды равновесия:

  • Устойчивое равновесие;
  • Неустойчивое равновесие;
  • Безразличное равновесие.

Устойчивое равновесие – это равновесие, когда при малом отклонении от положения равновесия возникает сила, возвращающая его в состояние равновесия (маятник остановившихся часов, теннисный шарик, закатившийся в ямку, Ванька-встанька или неваляшка, белье на веревке находятся в состоянии устойчивого равновесия).

Неустойчивое равновесие – это состояние, когда тело после выведения из положения равновесия отклоняется из-за возникающей силы еще больше от положения равновесия (теннисный шарик на выпуклой поверхности).

Безразличное равновесие – будучи предоставленным, самому себе тело не меняет своего положения после выведения из состояния равновесия (теннисный шарик, лежащий на столе, картина на стене, ножницы, линейка, подвешенные на гвоздик находятся в состоянии безразличного равновесия). Ось вращения и центр тяжести совпадают.

Для двух тел, то тело будет более устойчиво, которое обладает большей площадью опоры.
































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: Изучить состояние равновесия тел, познакомиться с различными видами равновесия; выяснить условия, при которых тело находится в равновесии.

Задачи урока:

  • Учебные: Изучить два условия равновесия, виды равновесия (устойчивое, неустойчивое, безразличное). Выяснить, при каких условиях тела более устойчивы.
  • Развивающие: Способствовать развитию познавательного интереса к физике. Развитие навыков сравнивать, обобщать, выделять главное, делать выводы.
  • Воспитательные: Воспитывать внимание, умения высказывать свою точку зрения и отстаивать её, развивать коммуникативные способности учащихся.

Тип урока: урок изучения нового материала с компьютерной поддержкой.

Оборудование:

  1. Диск «Работа и мощность» из «Электронных уроков и тестов.
  2. Таблица «Условия равновесия».
  3. Призма наклоняющаяся с отвесом.
  4. Геометрические тела: цилиндр, куб, конус и т.д.
  5. Компьютер, мултимедиапроектор, интерактивная доска или экран.
  6. Презентация.

Ход урока

Сегодня на уроке мы узнаем, почему подъёмный кран не падает, почему игрушка «Ванька-встанька» всегда возвращается в исходное состояние, почему Пизанская башня не падает?

I. Повторение и актуализация знаний.

  1. Сформулировать первый закон Ньютона. О каком состоянии говорится в законе?
  2. На какой вопрос отвечает второй закон Ньютона? Формула и формулировка.
  3. На какой вопрос отвечает третий закон Ньютона? Формула и формулировка.
  4. Что называется равнодействующей силой? Как она находится?
  5. Из диска «Движение и взаимодействие тел» выполнить задание № 9 «Равнодействующая сил с разными направлениями» (правило сложения векторов (2, 3 упражнения)).

II. Изучение нового материала.

1. Что называется равновесием?

Равновесие – это состояние покоя.

2. Условия равновесия. (слайд 2)

а) Когда тело находится в покое? Из какого закона это следует?

Первое условие равновесия: Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю. ∑F = 0

б) Пусть на доску действуют две равные силы, как показано на рисунке.

Будет ли она находиться в равновесии? (Нет, она будет поворачиваться)

В покое находится только центральная точка, а остальные движутся. Значит, чтобы тело находилось в равновесии, необходимо, чтобы сумма всех сил, действующих на каждый элемент равнялась 0.

Второе условие равновесия: Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по часовой = ∑ M против часовой

Момент силы: M = F L

L – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

3. Центр тяжести тела и его нахождение. (слайд 4)

Центр тяжести тела – это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела (при любом положении тела в пространстве).

Найти центр тяжести следующих фигур:

4. Виды равновесия.

а) (слайды 5–8)



Вывод: Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.

Устойчиво то положение, в котором его потенциальная энергия минимальна. (слайд 9)

б) Устойчивость тел, находящихся на точке опоры или на линии опоры. (слайды 10–17)

Вывод: Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.

в) Устойчивость тел, находящихся на плоской поверхности.

(слайд 18)

1) Поверхность опоры – это не всегда поверхность, которая соприкасается с телом (а та, которая ограниченна линиями, соединяющими ножки стола, треноги)

2) Разбор слайда из «Электронных уроков и тестов», диск «Работа и мощность», урок «Виды равновесия».

Рисунок 1.

  1. Чем различаются табуретки? (Площадью опоры)
  2. Какая из них более устойчивая? (С большей площадью)
  3. Чем различаются табуретки? (Расположением центра тяжести)
  4. Какая из них наиболее устойчива? (Укоторой центр тяжести ниже)
  5. Почему? (Т.к. её можно отклонить на больший угол без опрокидывания)

3) Опыт с призмой отклоняющейся

  1. Поставим на доску призму с отвесом и начнём её постепенно поднимать за один край. Что мы видим?
  2. Пока линия отвеса пересекает поверхность, ограниченную опорой, равновесие сохраняется. Но как только вертикаль, проходящая через центр тяжести, начнёт выходить за границы поверхности опоры, этажерка опрокидывается.

Разбор слайдов 19–22 .

Выводы:

  1. Устойчиво то тело, у которого площадь опоры больше.
  2. Из двух тел одинаковой площади устойчиво то тело, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.

Разбор слайдов 23–25.

Какие корабли наиболее устойчивы? Почему? (У которых груз расположен в трюмах, а не на палубе)

Какие автомобили наиболее устойчивы? Почему? (Чтобы увеличить устойчивость машин на поворотах, полотно дороги наклоняют в сторону поворота.)

Выводы: Равновесие может быть устойчивым, неустойчивым, безразличным. Устойчивость тел тем больше, чем больше площадь опоры и ниже центр тяжести.

III. Применение знаний об устойчивости тел.

  1. Каким специальностям наиболее необходимы знания о равновесии тел?
  2. Проектировщикам и конструкторам различных сооружений (высотных зданий, мостов, телевизионных башен и т.д.)
  3. Цирковым артистам.
  4. Водителям и другим специалистам.

(слайды 28–30)

  1. Почему «Ванька-встанька» возвращается в положение равновесия при любом наклоне игрушки?
  2. Почему Пизанская башня стоит под наклоном и не падает?
  3. Каким образом сохраняют равновесие велосипедисты и мотоциклисты?

Выводы из урока:

  1. Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  2. Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  3. Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Домашнее задание : § 5456 (Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский)

Использованные источники и литература:

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н.Сотский. Физика. 10 класс.
  2. Диафильм «Устойчивость» 1976 г. (отсканирован мною на плёночном сканере).
  3. Диск «Движение и взаимодействие тел» из «Электронных уроков и тестов».
  4. Диск «Работа и мощность» из «Электронных уроков и тестов».

Статика.

Раздел механики, в котором изучаются условия равновесия механических систем под действием приложенных к ним сил и моментов.

Равновесие сил.

Механическое равновесие , также известно как статическое равновесие, — состояние тела, находящегося в покое, или движущегося равномерно, в котором сумма сил и моментов, действующих на него, равна нулю

Условия равновесия твердого тела.

Необходимым и достаточными условиями равновесия свободного твердого тела является равенство нулю векторной суммы всех внешних сил, действующих на тело, равенство нулю суммы всех моментов внешних сил относительно произвольной оси, равенство нулю начальной скорости поступательного движения тела и условие равенства нулю начальной угловой скорости вращения.

Виды равновесия.

Равновесие тела устойчиво , если при любых допускаемых внешними связями малых отклонениях от положения равновесия в системе возникают силы или моменты сил, стремящиеся возвратить тело в исходное состояние.

Равновесие тела неустойчиво , если хотя бы при некоторых допускаемых внешними связями сколько угодно малых отклонениях от положения равновесия в системе возникают силы или моменты сил, стремящиеся еще больше отклонить тело от исходного состояния равновесия.

Равновесие тела называется безразличным , если при любых допускаемых внешними связями малых отклонениях от положения равновесия в системе возникают силы или моменты сил, стремящиеся возвратить тело в исходное состояние

Центр тяжести твердого тела.

Центром тяжести тела называется точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю. Например, в системе, состоящей из двух одинаковых масс, соединённых несгибаемым стержнем, и помещённой в неоднородное гравитационное поле (например, планеты), центр масс будет находиться в середине стержня, в то время как центр тяжести системы будет смещён к тому концу стержня, который находится ближе к планете (ибо вес массы P = m·g зависит от параметра гравитационного поля g), и, вообще говоря, даже расположен вне стержня.

В постоянном параллельном (однородном) гравитационном поле центр тяжести всегда совпадает с центром масс. Поэтому на практике эти два центра почти совпадают (так как внешнее гравитационное поле в некосмических задачах может считаться постоянным в пределах объёма тела).

По этой же причине понятия центр масс и центр тяжести совпадают при использовании этих терминов в геометрии, статике и тому подобных областях, где применение его по сравнению с физикой можно назвать метафорическим и где неявно предполагается ситуация их эквивалентности (так как реального гравитационного поля нет и не имеет смысла учёт его неоднородности). В этих применениях традиционно оба термина синонимичны, и нередко второй предпочитается просто в силу того, что он более старый.

© sosh4sosnogorsk.ru, 2024
Образовательный портал для всех